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The first two pages of this bulletin originally appeared under the  
title “A Perfectly Normal Distribution of Precisely No Information” 
in Nozone X: Forecast (New York: Nozone, 2008), and also in  
A Couple Thousand Short Films About Glenn Gould (London: Film 
and Video Umbrella, 2008). The original text has been considerably 
appended here, and egregious errors retroactively addressed.

Cover image: p. 353 from A Million Random Digits (With 100,000 
Normal Deviates), published by RAND Corporation (1955)
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Just after World War II, The RAND Corporation was quietly working on  
a massive book of numbers. A Million Random Digits (With 100,000 
Normal Deviates) was published by The Free Press in 1955 after almost 
ten years of meticulous production. The volume is comprised of page after 
page of numbers—mathematical tables filled with random digits. (A typi­
cal page (picked at random) from the 1966 printing is reproduced on the 
cover of this bulletin.) The random number bible has passed through three 
editions, multiple printings, and is currently available as both a soft format 
paperback book and as a text data file downloadable directly from RAND.

A Million Random Digits was produced out of an increasing demand at 
RAND from the onset of the Cold War. Random numbers are necessary 
for all kinds of experimental probability procedures including game 
simulations and scenarios, weather forecasting, message encryption and 
compression, financial market projections and any complex statistical 
model that attempts to predict future behavior based on past observation. 
In order to reproduce probabilistic situations, purely random numbers 
are critical as numerical starting points and/or additional data sources. 
Without them, these statistical projections, or Monte Carlo models as they 
are commonly called, will show biases based on their starting conditions 
that make their forecasts (mathematically) useless.

Producing a random digit is complex. To make the tables in A Million 
Random Digits, RAND engineers created an electronic roulette wheel with 
32 possible values by measuring the decay of a radioactive molecule gated 
by a constant frequency pulse. These regular electric signals (either on 
or off, 100,000 times a second for 10 seconds) were run through a five 
digit binary counter to produce a 5-bit number with 32 possible values. 
The binary number was converted to decimal and only the final digit was 
retained to create the 1,000,000 random digits. These values were fed into 
an IBM punch machine to produce 20,000 computer punch cards with 50 
digits each. (Punch cards were then the only practical way to both store 
and input information into a digital computer.) However, when analyzing 
this first attempt, RAND engineers detected a bias. Employing a standard 
statistical goodness-of-fit test to measure the data’s conformity to a bell-
shaped or “normal” curve, the sampled numbers did not match closely 
enough to the normal distribution of values which would indicate purely 
random digits. Each number was added modulo 10 (divide by 10 and  
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use only the remainder) to the corresponding digit on the previous card  
to yield a new set of random values with an almost perfectly normal distri­
bution. Random digit tables were then printed on an IBM 856 Cardatype 
and reproduced as pages for the book. Proofreading was redundant  
given the nature of the information. Nonetheless, every twentieth page 
was proofed and every fortieth was summed against the original punch 
cards. 

Using a random digit from the book is not much simpler. Instructions are 
included in the introduction and read as some kind of cabalistic incantation:

Open the book to an unselected page of the digit table and blindly choose 
a five-digit number; this number with the first digit reduced modulo 2 
determines the starting line; the two digits to the right of the initially selec
ted five-digit number are reduced modulo 50 to determine the starting 
column.

While RAND engineers were producing A Million Random Digits, two 
American mathematicians, MIT professor Norbert Wiener and Bell 
Labs researcher Claude Shannon were simultaneously creating rigorous 
mathematical models of communication processes which together are 
known as Information Theory. In this widely-applied framework, informa­
tion is defined as the amount that one value can tell you about the next 
value. For example, the value 12:32 PM tells you that the next should  
be 12:33 PM—therefore, 12:32 PM has a high Information content.  
Or, a temperature of 71˚ F gives you a pretty good idea that the next 
value will remain in a limited range not far from 71˚ F. The fantastic 
achievement of this book is that each random digit in it tells you precisely 
nothing about the next. (This is the point.) A Million Random Digits is  
then a book that contains exactly, rigorously, meticulously and absolutely 
*no* information.

Four years have passed since the last paragraph.

In the meantime, it’s become clear that I got it perfectly wrong when the 
previous two pages of this text were first published under the title,  
“A Perfectly Normal Distribution of Precisely No Information.” A Million 
Random Digits ... does not contain *no* information, but, exactly 
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the opposite. The digits that construct the body of this volume contain 
nothing but information.

“I” IS FOR INFORMATION

Claude Shannon’s 1948 paper “A Mathematical Theory of Communi-
cation,” published in volume 27 of The Bell System Technical Journal, 
introduced the technically proper term “information” and outlined  
most of the not-yet-field of Information Theory. (The paper is so often 
referenced that academic journals provide a shortcut notation— just drop 
in “  shannon48” and the complete bibliographic details are automatically 
appended.) I’d read the paper before, but obviously missed its argument 
or at least the proper use of its terminology. In it, Shannon reloaded  
the common English word “information” with a new, technically precise 
and mathematically operative definition. He did the same with “entropy.”  
The new definitions are bound up in subtle mathematical relationships.

The fundamental problem of communication, according to Shannon, is that 
of “reproducing at one point either exactly or approximately a message 
selected at another point.” The message communicated is one selected 
from a set of possible messages. “Information,” for Shannon, was then the 
*substance* transferred by any communication. It is the material that gets 
moved from here to there. “A Mathematical Theory of Communication” 
proceeded from this premise to quantify and precisely model a generic 
communication system. As Shannon was an electronic engineer, much of 
the argument is carried in its mathematics—so in going back to the source 
of my “information” confusion, I decided this time to re-read the paper  
and work my way slowly through its equations.

The first was simple enough and essential, relating the amount of 
information communicated to the probability of picking any one particular 
message from a group of possible messages. For example, answering 
“yes” or “no” is one choice from a set of two possible messages. 
Messages can be of any length or complexity, and Shannon emphasized 
that the meaning of the message was irrelevant to the technical problem  
he was addressing. He was interested only in its transmission, a matter  
of reproduction, not interpretation.
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Another way to describe the amount of information would be to specify 
the *freedom of choice* in picking any one from a set of possibles. 
For example, if I were to ask you “Do you like tea?” then I could be 
reasonably certain that you will reply either “Yes” or “No.” But if 
instead, I enquired as to what kind of tea you like, your selected answer 
would come from the near-infinite set of tea varieties. (Today I’d answer, 
“Simple, Assam.” Ask me again tomorrow.) The information content of 
the first answer is relatively low, I know it will be either “Yes” or “No.” 
The second answer’s information is considerably higher, as the range  
of possible answers is much greater. Any one particular choice carries 
more information, more consequence—it matters more. The less certain 
you are of my answer, the more weight my reply carries. Simply, the 
amount of information measures the change in your uncertainty produced 
by my answer to the question.

The mathematical relation that describes the amount of information (I) 
when one message is selected from a set of possible messages is:

I = log2N

where N is the total number of possible messages. Extracting the logarithm 
(in base 2, rather than the base 10 of our usual decimal arithmetic) is only 
a matter of asking what exponent of 2 will equal the number in question. 
For example, 2 to the what-th power equals 8? The answer is 3, so that 
log28 = 3. Anyway, we can then apply this formula to the 1,000,000 
numerals from the RAND Corporation’s book to find the total amount of 
information contained within. (We will here assume that since each number 
is meticulously “random,” then the selection of any one number is discrete, 
or has no effect on the selection of the next digit.) Any random digit is 
selected from a set of ten possible choices (0–9), so to find the amount  
of information contained in any one digit, we let N = 10 and

I = log 210

I = 3.32 bits

Because each digit in the book is completely independent of every other 
digit, then we can just multiply that amount by the number of digits to 
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get the total information contained in the book, which you’ll notice is 
considerably more than the “no” information I originally suggested:

I = 3.32 bits x 1,000,000 digits 

I = 3,320,000 bits

Try this same exercise with N = 2 (two possible digits, 0 or 1) and you’ll 
find that I = 1,000,000 bits or 1 bit for each digit.

Our answers for I are given in “bits,” a compressed neologism Shannon 
also proposed in this paper: “the resulting units may be called binary digits, 
or more briefly, bits.” A bit represents a choice between two possibilities. 
It may be “on” or “off,” “black” or “white,” “0” or “1,” “A” or “B.”  
The bit is information’s atom, the smallest indivisible unit, its essential mea­
sure, or as anthropologist Gregory Bateson described a bit some years 
later, it’s *the difference that makes a difference.*

As soon as information could be quantified, measured and relayed in 
consistently measured chunks as bits, then it no longer mattered what kind 
of information was being relayed, what it meant, or to whom. Information 
was freed from meaning and now became a thing, as real as water and at 
least as fluid. It could be carried in the words on the pages of a book, by a 
secret whispered in confidence, through currents crackling over telegraph 
wires, and most consequently via electrical charges pulsing through the 
silicon valleys of a computer chip. 

“H” IS FOR ENTROPY

Claude Shannon had another letter as well, which followed the I of Infor­
mation and was integrally tied to it—H for “entropy.” He borrowed the 
term from physics where the Second Law of Thermodynamics describes 
entropy as the inevitable one-way tendency of any system to fall into 
disorder. Mathematician John von Neumann, who had already done exten­
sive work in expanding classical entropy into the fuzzy maths of quantum 
mechanics, pointed Shannon to the word as a proper name for his concept 
of informational uncertainty, suggesting appropriately enough:
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... no one really knows what entropy really is, so in a debate you will 
always have the advantage.

Like “information,” Shannon overloaded “entropy” with a new, precisely 
technical definition—it is the measure of uncertainty in the value of a 
random variable. So the entropy in the outcome of a perfect coin toss is  
a maximum value, or 1 as it is equally likely that the toss is either heads  
or tails. If the coin is weighted towards heads then the entropy decreases 
—we can now guess that it is a little more likely to be heads than tails,  
so our uncertainty has been reduced. If the coin has two heads, then we 
can be rather certain that any coin toss will produce heads. Therefore,  
our uncertainty is reduced to nothing (or entropy (H) = 0).

The general (now canonical) equation for entropy that Claude Shannon 
published in his 1948 paper has the form:

		
H = -  p (i) log2 p (i)

I shouldn’t go into too much detail regarding this mathematical string of 
para-alphabetical symbols, but there a couple of things you should know: 
(1) the large, bent E is a Sigma and means the sum over a range of values 
(from 1 to N here); and (2) the italic p stands for probability (in this case 
of picking the value i). It is enough for now to understand that the entropy 
in a certain quantity of symbols (say in the digits of the RAND book) is 
measured by summing the information content of each weighted by their 
relative probabilities. As the individual choices become equally likely  
(or random) then the entropy works its way towards a maximum value, 
which is equivalent to the brute information content of the message. �Any 
reduction in uncertainty, or randomness, reduces the entropy. 

So, for a purely random digit between 0–9, what’s its H? 

Let N = 10 and 
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H = -  p (i) log2 p (i)

H = -  .10 log2.10

H = -  .10    -3.32

H =    .332

H = 3.32 bits

Looks familiar, right?

If you did the same gymnastics with a less purely random digit between  
0 and 9—let’s say that picking a 7 is six times more likely than picking  
any other digit—then the resulting entropy is lower, H = 2.87 bits.  
You could now guess that it is more likely to pull a 7 than any other digit, 
and so the situation is a little bit less uncertain; hence, H goes down.

But RAND engineers wanted the biggest H possible, and worked  
ruthlessly to produce a series of digits which contain absolutely maximum 
entropy. So if A Million Random Digits ... contains perfect disorder 
(each number is fastidiously, precisely random), and it also contains total 
information, then it seems that there must be some essential relationship 
between information and randomness. 

Information is not the same thing as randomness, but instead, they are 
complements—tied together in a push-me-pull-you arrangement.  
One relies on the other. It turns out that pure randomness is fundamental  
to the digital communications of our so-called information age, and in a 
circular snake-eating-its-own-tail ouroboros conundrum, equally impossible 
to produce within the deterministic logic of a binary electronic computer. 
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“ ” IS FOR PI

Concluding his internal RAND Corporation report of June 1949 on the 
extended and difficult process of developing the million random digits, 
George W. Brown says:

My own personal hope for the future is that we won’t have to build any 
more random digit generators. It was an interesting experiment, it fulfilled 
a useful purpose, and one can do it again that way, if necessary, but it 
may not be asking too much to hope that this addition property, perhaps, 
or some other numerical process, will permit us to compute our random 
numbers as we need them.

This dream of programmatically (computationally) producing a purely 
random string of digits as Brown wished remains unresolved. As in the 
book, the definition of a random string of numbers requires that it contains 
no pattern—each number is completely discrete of any other number. 
There is no way to reduce the sequence of digits to any formula, or any 
program. For example, the first million digits of   appear at first glance  
to be random enough:

 = 3.14159265 ... 779458151

but that same number can be easily reproduced by the compact formula 
(or program) of dividing the circumference of a circle (length around the 
edge) by its diameter (length from one side to the other.) The recipe is:

 = C / d

So then the digits in  are not random at all. They are precisely accounted 
for by a simple, short program. (Recall that a random sequence cannot 
be compressed—the only way to determine the next digit is to randomly 
pick the next digit.) So a truly random number cannot be defined by a 
program, or definite method. Binary electronic computers are finite state 
machines, designed to be entirely predictable and run only by a set of 
instructions written as a computer program. Therefore, by definition, a 
computer cannot produce a random number as a random number cannot 
be computed.
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The best a digital computer can do is to produce what is called a 
PSEUDO- random number. There are many increasingly sophisticated 
algorithms employed whose quality of randomness (or entropy) is high 
enough for a majority of applications, but these are inevitably compromised 
by the fundamental impossibility of their task.

The only way to produce a purely random number in a computer is to join 
it to the quantumly messy world of life outside of its box. This is precisely 
the strategy taken by a number of competing projects that generate and 
release random numbers via the World Wide Web. www.random.org 
offers a true random number generator by using three radios tuned in-
between stations to capture atmospheric noise as a data source (or seed) 
for its continuous generation of noisy digits. On March 14 2012 at 1:32 
PM, I requested and received the following random number between 1 and 
1,000,000:

566662

which doesn’t look so random to me, but that seems to be the trick 
with real randomness—our own desires to produce patterns filters 
our empirical experience. Since going live in October 1998, random.org 
has offered up 1,094,739,583,783 bits of pure entropy and counting. 
Competing random number sites include Hotbits (www.fourmilab.ch/
hotbits) which employs the radioactive decay of the Cesium-137 nucleus 
(you can hear the bits as they are made) and even a setup that harnesses 
the random activity of a lava lamp to create the seed of a random number. 
www.lavarand.org takes continuous digital snapshots of the internally 
chaotic states of a lava lamp at a given moment and uses this collection of 
bits passed through a hash function to seed a high-octane pseudorandom 
generator called the Blum Blum Shub. 

The irony of expiring so much effort to produce something that surrounds 
us everywhere we look is not lost on Random.org’s founder, Mads Haahr. 
In a New York Times interview from 2001, he acknowledged:

It was a bit like selling sand in the desert. But it’s not quite like that, 
because the noise you’re getting from Random.org is pure in a way; it’s 
different from the hustling bustling cacophony of the information age. 
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Producing anything that’s pure, even noise, takes effort.

So why does it matter?

When RAND released its book, the numbers were most significantly 
valuable for statistical and experimental models and mathematical projec­
tions. Since then and with the rise of computer networks, they have 
become indispensible—random numbers are essential to using computers 
to communicate, securely, robustly, and consistently. Purely random digits 
are the degree zero of cryptography (“secret writing”), producing the 
unbreakable foundation of a secure encoding system. These are used in, 
for example, online payment systems and the safeguarding of sensitive 
databases. More fundamentally, they are employed to securely identify a 
particular computer on a network or ensure that a message addressed  
to one person reaches that one person and nobody else. 

The certainty that users have in the reliability of a communications system 
is likely to affect what gets said through it. If the mail ran occasionally 
and a letter only sometimes reached the intended address, I probably 
wouldn’t say something important to you in a letter. A secret whispered 
in confidence relies on the trust between two communicating parties: 
“Shhhhhh ... do you want to maybe step out for a drink?”

One widely employed system for encoding digital communication today is 
called Public-key cryptography and was properly introduced for use with 
digital computers in 1976, by Whitfield (“Whit”) Diffie and Martin Hellman. 
The Diffie-Hellman arrangement requires the production of two separate 
keys for use in transmitting a secure message: one private key and one 
public key. By publishing the public key for use by anyone wishing to 
communicate with its owner and keeping the other secret, the message is 
securely passed. A real-world analogy would be something like: Anne has 
a public mailbox with a slot. If Bill would like to get a message to Anne, he 
drops it in. Only Anne, with her mailbox key can recover the message. 

The corresponding electronic keys are actually very large numbers 
produced mathematically from an also-very-large random seed. The public 
key is produced by multiplying two long prime numbers—undoing this 
operation into its component factors is prohibitively difficult. By adding  
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the random seed, the process becomes impossible to duplicate. (Factoring 
a giant number into prime numbers is a bit like trying to un-mix two colors 
of paint in a can.) 

And yet all of this depends essentially on the randomness of the initial 
number for its strength. Early this year a team of European and American 
mathematicians and cryptographers uncovered a significant flaw in a 
currently very-widely used data encryption algorithm and published it in 
the whimsically-titled paper “Ron Was Wrong, Whit Was Right” (a sly 
reference to Whit Diffie and Ron Rivest, two key players in this arena). 
The researchers examined 7.1 million public keys and discovered that, 
based on the weakness (impurity) of their random number generation, 
27,000 of these were immediately vulnerable to simple cracking. 
Cryptographic weaknesses stemming from insufficiently random numbers 
have made the news before. In 1995, two researchers at University 
of California Berkeley discovered a flaw in the Netscape browser,  
and just last year, a similarly lazy approach in the software security of 
Sony Playstation 3 led to a massive breach of personal data for over  
75 million people.

But it isn’t just the security of personal information or the passing of secret 
messages that’s at stake. Claude Shannon had mapped this territory 
already—recall him describing: 

The fundamental problem of communication is that of reproducing  
at one point either exactly or approximately a message selected at 
another point.

He goes on to detail how the transmission of any message through a 
channel from one point to another *requires* encoding (encrypting) of that 
message. No communication is possible without this step.

As communication is ever-increasingly electronic and digital, then it is 
exactly this encryption that ensures that a message (its information) 
makes the journey confidently, predictably, and securely. And these 
encoding schemes and transfer protocols, for example the two-headed 
public/private key encryption scheme just described, rest firmly on the 
quality of the random numbers that stamp their exchanges.
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We use machines to communicate from person-to-person. We email,  
we chat, we post, we search; and each time the transaction relies on one 
computer speaking to another. If the elaborate mathematical dance of 
these encryption protocols is the language that allows machine-to-machine 
communication, then the pure entropy of A Million Random Digits ... is its 
alphabet.

*
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